Matrix Inverse

Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan <u>chanhl@mail.cgu.edu.tw</u> Stimulus-response computations

 Many of the linear systems of equations arising in engineering and science are derived from conservation laws.

 $[A]{x} = \{b\}$ forcing functions or
external stimuli $[Interactions]{response} = \{stimuli\}$ fSystem's state or response

Matrix inverse

If a matrix [A] is square
 [A][A]⁻¹=[A]⁻¹[A]=[I]

Vector norms

p-norm

$$\left\|\boldsymbol{X}\right\|_{p} = \left(\sum_{i=1}^{n} \left|\boldsymbol{x}_{i}\right|^{p}\right)^{1/p}$$

p = 1: sum of the absolute values

p = 2: Euclidian norm (length)

 $p = \infty$: maximum – magnitude

Norm of vector in MATLAB

norm(X,p)

р	Vector
1	sum(abs(X))
2	sum(abs(X).^2)^(1/2)
Positive, real-valued numeric p	sum(abs(X).^p)^(1/p)
Inf	max(abs(X))

Matrix norms

 μ_{max} is the largest eigenvalue of $[A]^{T}[A]$

Norm of matrix in MATLAB

norm(*A*,*p*)

р	Matrix
1	max(sum(abs(A)))
2	max(svd(A))
inf	max(sum(abs(A')))
'fro'	sqrt(sum(diag(A'*A)))

Matrix condition number

■ Cond[*A*]=||*A*||·||*A*⁻¹||

This number greater than or equal to 1

Relative error of the norm of the computed solution

 $t - c \ digits$

$$\frac{\left\|\Delta X\right\|}{\left\|X\right\|} \le \operatorname{Cond}[A] \frac{\left\|\Delta A\right\|}{\left\|A\right\|}$$

 $Cond[A] = 10^{c}$

Relative error of the norm of the coefficients of [A]

t digit precision (rounding errors, the order of 10^{-t})

Condition number of matrix in MATLAB

cond(*A*,*p*)

= norm(A,p) * norm(inv(A),p)

lf p is	Then cond(A,p) returns the
1	1-norm condition number
2	2-norm condition number
'fro'	Frobenius norm condition number
inf	Infinity norm condition number

Matrix condition evaluation of the Hilbert matrix

cond(A,inf) = 1.833 * 408.0000 = 748.0000

- This system is ill-conditioned because its condition number is much greater than 1.
- $c = \log 10(748) = 2.87$. Hence, the last 3 significant digits of the solution could exhibit rounding errors.

Exercise: Condition number

- Compute the condition number based on row-sum norm with/without normalization in each row by hand and by Matlab
- Compute the significant digits of the solution x of Ax=b that exhibit rounding errors.

Reference

 Steven C. Chapra "Applied Numerical Methods with MATLA B", 3rd ed., McGraw Hill, 2012.