Arithmetic and Logic Instructions

Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan <u>chanhl@mail.cgu.edu.tw</u>

Objectives

- Arithmetic operations of unsigned numbers
- Arithmetic operations of signed numbers
- Logical instructions
- Compare instructions
- Rotation instructions and data serialization

Arithmetic operations of unsigned numbers

- Addition (Examples 5-2, 5-3)
 - Decimal adjust WREG (DAW) (Example 5-4)
- Subtraction (Examples 5-5, 5-6, 5-7)
- Multiplication (Page 163)
- Division (Page 163 & Example 5-8)

BCD (binary coded decimal) number system

- Unpacked BCD
 - 59 is represented by "0000 0101" and "0000 1001"
- Packed BCD
 - **59** is represented by 59H "0101 1001"
 - Efficient in storing data

Digit	BCD
Ο	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Decimal adjust WREG (DAW) instruction

MOVLW ADDLW DAW	0x47 0x25 ; Adjust fo	; WREG = 47H ; WREG = 6CH, DC = 0, C = 0 or BCD addition by adding 6 (WREG=72H) C = 0
MOVLW	0x09	; WREG = $09H$
		; WREG = IIH, $DC = I, C = U$
DAW	; Adjust to	or BCD addition by adding 6 (WREG=17H) $C = 0$
MOVLW	0x52	; WREG = $52H$
ADDLW	0x87	; WREG = D9H, DC = 0, C = 0
DAW	; Adjust fo	or BCD addition by adding 60H (WREG=39H) $C = 1$
MOVLW	0x57	; WREG = 57H
ADDLW	0x77	; WREG = CEH, DC = 0, C = 0
DAW	; Adjust fo	or BCD addition by adding 66H (WREG=34H) $C = 1$

Add 0110 to lower 4 bits if lower nibble > 9 or if DC = 1Add 0110 to upper 4 bits if upper nibble >9 or if C = 1

Signed number arithmetic

Positive vs. negative numbers

- Range for 8-bit number
 - Unsigned numbers: 0 ~ 255
 - Signed numbers: -128 ~ 127

Overflow in signed number operation

- OV is set if either two conditions occurs
 - A carry from D6 to D7 but no carry out of D7 (C=0)
 - A carry from D7 out (C=1) but no carry from D6 to D7
- Signed number operations (Examples 5-13,14,15 & 16)

Logic operations

- ANDLW K
- IORLW K ; Inclusive OR
- XORLW K ; Exclusive OR
- Applications
 - Set bits using IORLW (Example 5-18)
 - Clear bits using ANDLW (Example 5-18)
 - Test a value using XORLW (Example 5-21)
- What are ANDWF, IORWF, XORWF?

Compare instructions

Compare examples

- Test a value using CPFSEQ (Example 5-24)
 - What's the difference between XORLW and CPFSEQ
- Compare a value using CPFSGT & CPFSLT (Example 5-26)

Rotate instructions

Mnemonic, operator	Description	16-bit instruction word	Status affected
RLCF f, d, a	Rotate left f through carry	0011 01da ffff ffff	C, Z,N
RLNCF f, d, a	Rotate left f (no carry)	0100 11da ffff ffff	Z,N
RRCF f, d, a	Rotate right f through carry	0011 00da ffff ffff	C, Z,N
RRNCF f, d ,a	Rotate right f (no carry)	0100 00da ffff ffff	Z, N

Figure 2.17 Operation performed by the **rlcf f,d,a** instruction

Figure 2.19 Operation performed by the **rrcf f,d,a** instruction

Figure 2.18 Operation performed by the **rlncf f,d,a** instruction

Figure 2.20 Operation performed by the **rmcf f,d,a** instruction

Data serialization via rotation instructions

- Output data bits serially (Example 5-28)
- Input data bits serially (Example 5-29)
- Test the bits in a value (Example 5-30)

SWAPF fileReg, d

Reference

- M.A. Mazidi, R.D. Mckinlay, D Causey, PIC Microcontroller and Embedded Systems Using Assembly and C for PIC18, Pearson Education Inc., 2008.
- Han-Way Huang, PIC Microcontroller: An Introduction to Software and Hardware Interfacing, Thomson Delmar Learning, 2005.